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1.0 Summary 

When our cyber defenses’ ability to prevent, avoid, and detect an attack are outmaneuvered 

and our information systems face impending loss of critical services, a fight-through 

capability must remain; otherwise restoration of those services may come too late for us to 

emerge undefeated. The task of "protecting the protector" drives us to create a fight-through 

capability that is hardened and heavily defended in cyberspace; however, these attributes 

alone are a "Maginot Line" that begs the question of why cyber attacks succeed in the first 

place.  The more realistic goal is to design a fight-through capability that can absorb 

punishment and then rebound so that it can be the basis for restoration of critical services. 

Adaptations of fault-tolerant computing concepts have been applied to address needs in cyber 

defense. 

 

Military strategist John Boyd conceived and developed the Observe, Orient, Decide, and Act 

Loop (OODA Loop) [1]. He applied the OODA Loop to the combat operations process 

including the engagement of fighter aircraft in aerial combat. Figure 1 shows a basic OODA 

Loop.  

    

      
Figure 1: A Basic Observe, Orient, Decide and Act (OODA) Loop 

 

We likened the fight-through problem to an Observe, Orient, Decide, and Act (OODA) loop.  

Redundancy, as the underpinning of fault tolerance, was strategically placed to counter an 
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attacker’s optimal strategies. The fight-through OODA loop was aimed to outperform the 

adversary’s OODA loop. 

 

Our goal was to discover and deliver new ways for adapting concepts from the field of fault-

tolerant design to create a cyber fight-through capability that absorbs punishment from 

attacker-induced faults yet prevails. Spatial, temporal, and information redundancy are the 

dimensions that, when stood-up concurrently, can withstand loss of resources in one 

dimension while the other dimensions supply the reinforcing resources for a fight-through 

capability.  Fault tolerance for fight through (FTFT) spans multiple dimensions of 

redundancy to form an OODA loop for fighting-through.  By being able to observe an 

attacker’s attempts to create faults in one dimension, FTFT can orient the other dimensions 

and then decide on their deployment in order to act against the attack – by fighting through it.  

 

2.0 Introduction 

 
Fault tolerance in information technology and computing share several conceptual 

similarities with cyber defense.  For example, fault tolerance deals with detection and 

treatment of failures and cyber defense deals with detection and treatment of violations. A 

well-formed and well-founded framework for treating violations comes from fault-tolerant 

computing. Traditionally, fault-tolerant computing dealt with randomly occurring faults and 

not faults results from intelligent attack. However, a reliable system should be survivable 

against the faults caused by cyber attacks as well as the internal failures. Whereas faults 

caused by natural-occurring phenomena are tolerable using established, standard approaches, 

attacker-induced faults require a more aggressive approach. New challenges arise in the area 

of transforming fault tolerance to attack tolerance.  

 

We have investigated others’ research into similar uses of fault tolerance. DARPA’s 

Organically Assured and Survivable Information Systems (OASIS) program performed and 

documented [2] research that aimed to develop “…ways to enable critical DoD computers to 

operate through a cyber attack, degrade gracefully if necessary, and allow real-time 
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controlled trade-offs between system performance and system security through such 

techniques as redundancy and diversity of operating systems.”   This research has 

applications in robust, self-forming networks required to successfully conduct network 

centric warfare. 

 

Based upon the results and insights from the OASIS program, DARPA launched the Self-

Regenerative Systems (SRS) Program [3]. The SRS program, like the OASIS program, 

sought to adapt concepts from fault-tolerant computing to cyber security.  One notable 

objective of the SRS program was that it aimed to surpass the fault tolerance attribute of 

graceful degradation set forth by the OASIS program.  The SRS viewed graceful degradation 

as a continual depletion of resources that would eventually lead to the defeat of information 

systems; instead, the SRS program sought to have information fully-rebound from attacker-

induced faults. Furthermore, given experiential knowledge of the attack, the information 

system could be immune to that attack in the future.  This learning technology was coined 

cognitive immunity. Encountering the same attack again would not adversely affect the 

information system; instead, once they became capable of defeating the attack, self-

generative systems were aimed at exceeding previous levels of performance.   

 

If fault tolerance is to be a trusted basis for a fight-though capability, then we must anticipate 

that the fault tolerance mechanisms themselves will be subjected to unanticipated conditions 

created by attackers. Anticipating the onset of the adverse effects of an attack is the subject 

of research in estimating an information system’s mean time-to-compromise (MTTC) [4].  

Related research into estimating the mean-time-to-breach (MTTB) [5] analyzes an attacker’s 

behavior.  Although the terms “breach” and “compromise” are similar, measuring MTTB 

requires significant detail about the target system whereas MTTC is measured in a 

comparative way using observable variables rather than a calculated indicator.  The work in 

estimating a MTTC is used by security architects and managers to intelligently compare 

systems and determine where resources should be focused. Like MTTB, MTTC estimates 

require variables that are difficult to exactly quantify such as attacker skill levels. MTTC and 

MTTB are used to deploy resources. Some of these resources may be redundant, such as 

redundant data for information recovery or redundant services for continuity of operations.    
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Redundancy plays a fundamental role in fault tolerance, since specific resources must be in 

place to deal with a fault when it is encountered. Spatial, temporal, and information 

redundancy are used to create fault-tolerant systems [6]. Spatial redundancy is the physical 

replication of hardware and software components. Information redundancy is the addition of 

redundant information or data.  Temporal redundancy attempts to reduce spatial and 

information redundancy at the expense of using additional time.  Designers of fault-tolerant 

systems must understand the types of redundancy techniques available and the methods that 

can be used to evaluate the impact of the redundancy.  Fault-tolerant system designs will 

often combine redundancy types.  For example, spatial and information redundancy are used 

together in Redundant Area of Independent Disks (RAID).  RAID provides survivable 

storage where the data is striped across multiple disks (spatial redundancy) and parity bits 

(information redundancy) are added.   

    

 

3.0 Methods, Assumptions, and Procedures 

 
The technology that we developed includes models, algorithms, and protocols to ensure that 

redundancy for fault tolerance creates an OODA loop for fighting-through.  An important 

step in this direction is maintaining consistency among replicas. We therefore begin this 

discussion of our methods, assumptions, and procedures by choosing a telling example to 

illustrate the basis of our intended work.  The example involves voting among replicated 

computers.  The process of replication in information systems forms a basis of system 

survivability.  Replication can overwhelm an attacker with too many targets, while also 

ensuring that a sufficient number of components will survive the attack. When an attacker 

breaches the defenses that surround certain system components and subsequently overtakes 

those components, their replicas carry out the mission. The premise behind replication as a 

defense mechanism then is that although the system’s internal resources have been 

diminished, it survives. A mechanism, however, is merely a trigger; procedures are used in 

conjunction with the mechanism to take the actions to fight through the attack. For these 

procedures we use game theory.   
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Section 3.1 introduces the use of replicated computers for a fight through capability and sets 

the stage for using game theory. Section 3.2 elaborates on the application of game theory in 

formulating a defensive strategy for replicated computers.  Section 3.3 extends the defensive 

strategy to specifically preserve the availability of service provided by the replicas. Section 

3.4 describes our recent advance in resolving the replicas’ redundant outputs, and this leads 

to Section 3.5 where we consider the how the replicas’ concurrent tasks impact the use 

software diversity.  Building upon this foundation of combining replication with diversity, 

Section 3.6 describes a game-theoretic approach for fighting through attacks.   Section 3.7, 

marks a departure from the predominate theme of fault tolerance. In Section 3.7 we examine 

trust in on-line social networks. Section 3.8 describes a new approach for routing in wireless 

sensor networks. An improved method for sharing of spectrum between cognitive radios is 

given in Section 3.9. 

 

3.1 Replicated Computers in a Cluster Environment 

 

Consider a cluster of computers where voting is performed. Each of the computers is 

redundant in the sense that they perform an identical task that is replicated among them all. 

Some computers in the cluster may be fault-free while others may be faulty. The most-often 

applied assumption is that a majority of the computers are non-faulty, so the voting decision 

is formed by majority rule. What drastically modifies this assumption is that faults may be 

attacker-induced. 

 

At the onset of our research we dealt with two noteworthy attack-tolerant systems: random 

dictator and random troika.  Figure 2 shows 2 clusters of 9 computers each: one cluster 

employs random dictator and the other random troika. Note that the majority of 9 is 5, so 

majority voting among all the computers within a cluster would tolerate, at most, 4 failed 

computers.  Random dictator and random troika represent different voting schemes. In Figure 

2, the random troika only considers majority voting among 3 of the 9 computers within a 

cluster.  Random dictator really performs no voting at all; instead, a computer selected at 

random “dictates” that its result should represent all of the computers in its cluster.  
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Figure 2: Computer Clusters with Random Dictator and Random Troika  

 

 

A published [7] FTFT result shows that the added fault tolerance of majority rule is 

apparently trumped by the added attack tolerance of the random dictator. Although it is 

counter intuitive to create a single point-of-failure, with random dictator, the whole purpose 

of voting in the first place (to the extent that the random dictator system would even be 

considered “voting,” in the everyday use of this word) is shifted away from its original one of 

replacing individual judgments with presumably more reliable collective judgments. In 

random dictator, the purpose of voting becomes that of creating a shell game hiding the 

identity of the dictator from the enemy.  In the more formal game-theoretic analysis of this 

contest between defender and attacker, the Nash equilibrium solution concept suggests that 

the attacker will continue to concentrate his forces so as to corrupt a bare majority of the 

computers in as many clusters as possible, even if he suspects that the defender will use 

random dictator, against which no attack strategy is more or less effective than any other.  

The reason for this behavior is to deny the defender the use of the otherwise more attractive 

majority rule system.  One effect, then, is that by concentrating his forces, the attacker denies 

the defender the benefit of fault tolerance lent by majority rule.  Therefore, if our policy for 

cyber defense were to adopt a purely random dictator approach, then we inadvertently give a 

strategically-thinking attacker an edge by becoming highly vulnerable to naturally-occurring 

faults. 

 

To fight through, we could resort to something other than random dictator that combines a 
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degree of fault tolerance with some of the random dictator’s shell-game effect. It seems 

possible that randomly selecting a small subset of voting computers (called a random troika  - 

see Figure 2 above) in the cluster would provide a better defense than both random dictator 

and majority rule for some examples similar to the one we have been discussing.  If the 

attacker continued to corrupt a bare majority of the computers in as many clusters as 

possible, then random troika would out-perform majority rule in the corrupted clusters, but in 

these clusters it would not do as well as random dictator.  In the unattacked clusters, random 

troika would out-perform random dictator, and be out-performed by majority rule.  But such 

an analysis fails again to take account of strategic factors; if random troika were available as 

a defense option, then the attacker’s optimal strategy might no longer be to corrupt a bare 

majority of the computers in as many clusters as possible.  Certainly, it then became 

necessary to do a careful strategic analysis with random troika added as an available fault 

tolerance-based defense strategy. 

 

3.2 Game Theoretic Formulation of Defensive Strategy Against Rational Attackers 

 

Motivated by the consideration of strategic factors posed by deploying the random troika, we 

developed  an optimal voting strategy (i.e., the optimal number of participating voters) 

against rational attacks whose goal is cause total failure by strategically compromising 

individual voters across the system. According to Myerson [8], “game theory can be defined 

as the study of mathematical models of conflict and cooperation between intelligent rational 

decision-makers”. Myerson’s notion of “rational decision-makers” takes on a malicious 

connotation when applying game theory to cyber attacks and the highly unconventional 

tactics such attackers can employ.  Simply put, rational attackers are ones whose actions do 

not deliberately diminish the chances to achieve the attackers’ goals. Armed with this notion, 

we modeled [9] the problem of deciding the number of participating voters against rational 

attackers as a two-person zero-sum game problem and provided solutions based on the 

results of this well-known game problem. A set of experiments was performed to illustrate 

the devised majority voting strategy when varying numbers of replicas are deployed and 

undergo aggression from rational attacks.  The aggregate replicas’ ability to maintain the 

integrity of their majority output changes when the individual replicas’ reliability changes 
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and when the number of compromised replicas grows. We found the optimal number of 

participating replicas participating in a majority vote when the system undergoes rational 

attacks, and we provide the solution for deciding the optimal number of voters that 

maximizes the expected number of clusters that will produce a correct result while the system 

is under attack. Three sets of experiments were performed investigating the relationship 

between the voting strategy, the attacker’s strategy, and the ability of the system’s fault 

tolerance to fight through the attack and preserve overall system integrity.  

 

3.3 Optimal Resource Allocation for Protecting System Availability  

 

Whereas our work in [9] dealt primarily with spatial redundancy (i.e., replicated computers in 

a cluster environment), the use of multiple dimensions of redundancy – spatial, temporal, and 

information – became more apparent in our work [10] that focused on maintaining 

availability of the system’s core services’ in an adversarial environment. In our modeling of 

this problem, the defender seeks to maintain maximum system availability for a given period 

of time and does so by distributing defensive resources to attain the following: enhancing an 

individual replica’s protection mechanisms; creation of additional replicas to overcome the 

attacker with too many targets; and producing camouflaged components that appear like 

functioning replicas but are merely decoys.  With this environment, we see that redundancy 

for fault tolerance is used for fighting through.  The spatial redundancy of replicas is 

accompanied by the information redundancy of the extra message traffic generated due to the 

camouflaged replicas.  In a separate paper [11], we demonstrated how this form of 

redundancy burdens attackers who are attempting to probe the system by enmeshing them in 

an indiscernible pattern of message traffic that often misleads them from their intended target 

- thus lengthening the mean-time-to-breach a replica. Temporal redundancy is embodied in 

[10] by the repetitiveness of the camouflaged replicas where their seemingly meaningful 

efforts merely mimic the action’s of the true replicas but at another time.  These instances of 

information and time redundancy support our assumption that the attacker has no a priori 

knowledge about the system configuration; instead, the attacker has to gain this knowledge.  

The assumed inability to distinguish between fake and true replicas or to distinguish between 

replicas having enhanced protection and those without means that, at the onset, the attacker 



 

Approved for Public Release; Distribution Unlimited.  

9 
 

resorts to random attacks on these replicas that are perceived to provide the system’s core 

services. We formulated this attacker-defender problem as a defender’s optimization problem 

and presented an algorithm that optimally allocates the above system resources to maximize 

the system’s availability.  Our analysis of the attacker-defender problem in which the 

defender’s resources are limited and must be distributed between the  three different 

approaches to protect system, (i.e., adding redundant, or camouflage replicas,  or installing 

enhanced security scheme on existing replicas) led to our devising an algorithm that 

optimally allocates this triad of resource types so as to maximize the system’s availability. 

Three sets of experiments were performed to investigate the relationship between:  the triad 

of resource types and system availability; attack time and different resource allocation 

strategies; and resource allocation strategies and the number of replicas providing core 

services. In this work, however, we did not consider the cost the attacker anticipates accruing 

when promulgating the attack to different replicas in the next step of the game.  If such costs 

are taken into consideration, the optimal solution may be viewed from two different 

perspectives: first, the attacker’s will consider how frequently to switch to another targeted 

replica while striving to maximizing the system damage inflicted;  second,  the defender will 

analyze the attacker’s strategy first and then take those countermeasures deemed necessary to 

minimize the system damage.  In the future, we plan to apply game theory to this 

strategically-rich scenario; however, in Section 3.6 we apply game theory to form a replica’s 

reputation and use this reputation to assist in fighting through an attack. 

 

3.4 Continued Research in Voting Algorithms 

 

Prior to the FTFT effort, we had conducted research into voting algorithms; yet, as voting is 

oftentimes inseparable from the deployment of replicated computing resources to fight-

through cyber attacks, we carried out additional research in the area. Our work in FTFT 

employed hierarchical adaption methods to manage the Quality-of-Service (QoS) at various 

levels of a replica voting system: namely, the timely delivery of correct data to the end-user.  

The fine-grained adaptations occurring in the voting system are controlled macroscopically 

via the QoS reconfiguration actions occurring at the application layer, in a context of the 

external events sensed by a situational assessment module. Whereas our past work had 
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focused on engineering the voting protocol mechanisms to lower the time-to-complete (TTC) 

a voting round and the bandwidth consumed therein, our current work [12] considered the 

dynamic nature of the network bandwidth availability to support the voting operations and 

the unpredictable changes in device-level fault occurrence and network message loss and 

delay.  We treat the voting system as a “black box” with known I/O behaviors, which is then 

exercised by the situational assessment module for macroscopic control.   Our hierarchical 

adaptation approach offers the potential to keep the data miss rate of the voting system within 

the allowed limits as the system and environment parameters change.   

 

3.5 A Brief Examination of Software Diversity: From Fault to Attack Tolerance 

 

High assurance of computing and information systems is challenged by the very entity that 

makes such systems possible – software. This is because software is especially susceptible to 

unanticipated faults.  The Apollo guidance computer offers a historical example. 

Technologists claim that the goal to put a man on the moon propelled the advancement of 

integrated circuits (ICs) from what were nascent prototypes to proven chips having full-scale 

manufacturability [13].  The capability for sustained production of reliable ICs launched the 

3rd generation of digital computers.  However, in contrast to being credited with helping 

reach this milestone of hardware development, the U.S. Air Force noted that the Apollo lunar 

missions, in spite of being one of the most carefully planned and executed software projects 

ever taken, attributed nearly all their major problems to software design faults [14]. The 

design successes of the Apollo space borne computer reside predominantly in hardware.  

Since then, the overwhelming concern for design faults had thus not been directed towards 

hardware; instead, design faults consistently became a major concern in software [15]. 

Indeed, the major portion of a system’s complexity is to be found in the software, and design 

faults naturally stem from complexity.  

 

Software faults are design faults – introduced when the software is created.   They can occur 

throughout the design process including programming.  If they escape detection during the 

testing and debug stages, then these faults remain within the fielded software.  Recognizing 

the potential significance of such faults, techniques to tolerate them have been proposed for 
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high assurance systems.  Fault tolerance is almost always enabled through the use of 

redundancy; yet, unlike physical faults, software faults occur only at design time, so the 

ability to tolerate them was sought through redundant – albeit different - designs.  In the 

1970’s, two main techniques for tolerating software faults emerged.  They are the Recovery 

Block (RB) scheme [16] and N Version Programming (NVP) [17]. In general, these schemes 

employ multiple variants of the software in an attempt to guarantee that at least one variant 

will pass the correctness checks that are performed while the software executes.  The checks 

include voting on results that may not exactly agree, but are nonetheless correct, and 

determining the reasonableness of a variant’s results.   One study [18] advocated RB and 

NVP for creating a combined hardware-software fault-tolerant architecture because the 

checks these schemes employed were deemed sufficient to detect hardware faults as well.  

However, the establishment of quantified estimates of the improvement in system reliability 

that could be expected from using RB or NVP never fully materialized [15].  Without 

measurable benefits to be derived from the creation of multiple software variants, software 

fault tolerance did not become widely accepted; instead, it has been limited to extreme cases 

such as the NASA Space Shuttle’s redundant computers.  During the Shuttle’s flight-critical 

phases, one computer ran independently-designed software apart from the other computers’ 

lock-step execution of identically-replicated software.  This alleviated NASA’s fears of a 

generic bug causing simultaneous failure of the redundant computers all running identical 

software [19].   The perceived, but nevertheless unquantified, gain in assurance justified the 

creation of diverse software. 

 

Let us turn, for the moment, to more contemporary concerns and how software diversity has 

come to the forefront.  Concerns over the absence of software diversity in modern computing 

and information systems spurred a study by Birman and Scheinder [20].  Being in a software 

monoculture, these systems can be perceived as being susceptible to a common flaw.  The 

flaws, however, are not design faults that, when encountered by a running program, would 

cause the program to fail; instead the targeted flaws are those that create vulnerabilities in the 

software that are exploitable to attack.  In such an environment, an attack that successfully 

exploits a single global vulnerability could compromise all machines of the monoculture. 

Addressing this vexing problem, Birman and Scheinder defined 3 types of attacks that could 
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be directed at a monoculture, and for each type, they outlined the corresponding defense [20]: 

 

 
• Configuration: Exploit aspects of the configuration.  Vulnerability introduced by system 

administrator or user who installs software on the target. Useful Defense: Monoculture 

such as  Standard Desktop Computer 

 

• Trust: Exploit assumptions made about the trustworthiness of a client or server. 

Vulnerability  introduced by system or network architect. Useful Defense: Principles of 

least privilege and/or formal methods 

 
• Technology: Exploit programming or design errors in software running on the target.  

Vulnerability introduced by software builder. Useful Defense: Diversity 

 

 

Flaws are at the underpinnings of all these attacks. For example, when systems are 

misconfigured, confidentially of the system could be compromised by a configuration attack 

that successfully skirts the system’s encryption.  A trust attack could result from a flawed 

assumption – one not rigorously substantiated.  For example, a server considered as 

furnishing trusted information may actually have good information supplanted with bad - 

thus leading to a violation of information integrity.  Apart from unintentional software flaws 

manifesting as software faults that could cause a program to fail, fault-free code becomes 

detrimental to a program – or flawed - when it enables attack. Specifically, the technology, in 

what could very well be a fully-functional program, is maliciously manipulated by the 

attacker so that the program goes into behavior that is unintended from its design.   

 

Misconfigurations are adverse to a monoculture because a monoculture’s components 

operate in a uniform manner, and when actions are done frequently and repeatedly, they 

become less prone to error. Enforcing the principles of less privilege and applying formal 

methods avoids bona fide behaviors that are oblivious to the pitfalls of misplaced trust.  

Stemming from diversity of software is a multiplicity of underlying avenues for the attacker 

to attempt malicious manipulation; yet the multiplicity forms a defense.   Instead of offering 
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the attacker a richness of targets, the attacker now has to contend with temporal and spatial 

barriers: the attacker needs enough time to successfully attack a sufficient number of distinct 

software targets.   

 

High assurance of computing and information systems – especially those on enterprise scale 

that would entail the embracing of a monoculture – calls upon software diversity.  We have 

seen that software diversity for high assurance has spanned over half a century of computer 

history. During that time, software diversity did not always garner high acclaim. In spite of 

its longevity, a period even existed when software diversity was viewed as a detriment to 

high assurance.  In 1990, Abbott argued that software fault tolerance techniques, as 

represented by the RB and NVP techniques, are departures from sound software engineering 

practices [21].   In addition to the high expense for RB’s and NVP’s multiple software 

variants, Abbott took exception to the notion that software fault tolerance’s capturing of 

software design faults in the field is somehow better than devoting sufficient engineering 

resources to detecting the same faults during normal program testing.  He further noted that 

in order for either RB or NVP to tolerate software design faults, a variant of the software that 

handles each of the incorrect but tolerated cases must be designed and implemented ahead of 

time.  The acceptability of releasing potentially faulty variants alongside those that are 

supposedly fault-free served as empirical evidence that a thorough design-and-test 

methodology had been prematurely and deliberately abandoned.   Whatever design faults 

remained were to be handled, by RB or NVP, in the field.  Abbott wryly referred to this 

situation as “delayed debugging “. 

 

Adding to the perceived futility of RB or NVP, Abbot noted their complete dependence on 

the traditional design cycle to provide the code for a variant to do the correct processing.  He 

proclaimed [21], “It certainly is not the case that when a fault appears the system 

dynamically generates new corrected code!” This highly dismissive stance, although soundly 

argued, is now viewed more promisingly when the system being considered is confronted 

with attacks. Software diversity that is not merely statically created at design time but is 

dynamically generated by the system strengthens the system’s defense.  
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In 2000, DARPA assessed the existing approaches to information system security and 

survivability – tenants of high assurance - as consisting of preventing, detecting and 

containing unintentional errors and attacks. These systems, by employing static means for 

high assurance, largely mimicked principles from fault-tolerant computing.  The realization 

that such systems were too vulnerable to attacker-induced faults gave DARPA the impetus to 

initiate the Organically Assured and Survivable Information System (OASIS) program [2] in 

partnership with the Air Force Research Laboratory’s (AFRL’s) Information Directorate. The 

OASIS program was a cross-disciplinary program that combined fault tolerance and 

Information Assurance (IA) technologies to build information systems that detect, contain 

and operate through attacks in the then emerging cyberspace.   Following the OASIS 

program’s successes, a challenge of operating through attacks emerged: resource depletion.   

Regardless of how well systems are protected or how well they tolerate errors and attacks; 

they will eventually fail over time unless they have the ability to replenish lost resources.  On 

the positive side, OASIS-type systems that tolerate attacks by gracefully degrading services 

afford time for these systems to regenerate.  In 2004, DARPA began funding work in Self-

Regenerative Systems aimed at replenishing themselves of lost due to unforeseen errors or 

attacks and automatically improving their ability to deliver critical services. The sought-after 

product would make information systems and data persistent.  Such information systems 

must have redundancy and the ability to regenerate required functionality with increased 

error and attack immunity, whereby corrupted components can be regenerated without 

negatively affecting the whole system.  FTFT intended provide a complementary effort that 

was to expand replication from being merely large-scale deployments aimed at foiling an 

attacker with too many targets.  By introducing dynamic diversity in runtime environments, 

FTFT sought to invoke a machine’s ability to automatically recover from attacks – 

demonstrating the passage from fault to attack tolerance. 

 

The complexity of regeneration warrants an illustrative, albeit simplified, example for 

survivable voting execution with software diversity. Figure 3 shows 3 host computers, A, B, 

and C, each executing diverse, but functionally-equivalent versions of code.  The code is 

logically divided into stripes such that when a stripe boundary is encountered, A, B and C 

produce output, in the form of votes, to a poller P.  Assume that the host’s vote represents the 
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state of that host. Since the code of each of the stripes is diverse, the votes must be allowably 

different yet still be correct; therefore, the poller must be able to perform inexact 

comparisons between the votes to determine if there is a disagreement among them.  Figure 3 

shows that host C, being a victim of an outside attack, casts a disagreeing vote.   The poller in 

this case is able to create a majority vote that represents the uncompromised computers A 

and B.  If the code in all of the 3 computers were completely identical, then regeneration 

would be straightforward, but by introducing diversity, any necessary of translation of data 

and state that underlies the regeneration is assumed to be performed by the poller.  
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Figure 3: A Sample Scenario for Diverse Code Execution 

 

This is a simple example of corrupted components – the state of the code in this case - being 

regenerated.  However, the stripe executions in Figure 3 shows that the regeneration does not 

endure; instead, host C promulgates the attack by corrupting its state as illustrated in the last 

stage of Figure 3. Although no harm is ultimately done because of the poller’s ability to mask 

host C’s votes, the incompleteness of the regeneration puts this system on the brink of losing 
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its assurance.  If either machine A or B were to also become compromised, then the final 

result produced in Figure 3 is corruptible.   From this perilous position, A and B must unify 

before another compromise precludes any possibility of further regeneration.  A complete 

regeneration would eliminate host C and replace it. In realizing a rebounding from the attack 

with a replenishment of the previously-lost computer C, A and B must act in unity – 

agreeing, say, on the admission of a new member to the triumvirate.  Such an agreement, 

even in the simple collection of computers of Figure 3, involves performing the act of 

consensus.  Seeking high assurance of regeneration incited an investigation into combining 

software diversity with consensus protocols to form an attack-tolerant system.    

 

Instantiations of software diversity have been demonstrated through the automatic generation 

of code from a formal verification system [22]. In [22], formal verification in the 

combination of software diversity with consensus protocols underscores high assurance in 

making the passage from fault to attack tolerance. Abbott’s skepticism of software diversity 

dismissed the idea that when a fault appears the system does not dynamically generate new 

corrected code. For attack tolerance, such faults would be considered as attacker induced; yet 

software faults in the classical sense are not to be ignored. Currently in [22], the regenerated 

code that is diversified to thwart sustained technology attacks is formally verified. Unlike 

being characterized as “delayed debugging” the diversity in [22] is grounded in rigor. This 

avoids the common pitfall encountered when introducing new technology into a high 

assurance setting: susceptibility to faults is not inadvertently increased.   

 

High assurance is also a compelling reason to avoid “delayed detection” of attacks. If 

evidence of attack is to be found in a computer’s state, then it compels us, in the context of 

Figure 3, to frequently compare the computers’ states to detect such evidence.  Consensus 

and voting are inextricably bound: for participants to reach agreement they need to vote 

among themselves. The onerousness of “delayed debugging” stems from, according to 

Abbott, the undue burden it places upon fielded systems.  He asserts that transferring the 

need to find and remedy faults from the design phase to when the system is in operation is 

not an efficient use of resources; instead, resources, such as time, could be allocated much 

more propitiously.  
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 Performing comparisons, as in Figure 3, requires time. The act of comparison is a common 

ingredient to both consensus and voting, so it is readily available as a means to detect attacks 

during these operations.  A tendency to “delay detection” could spell defeat because it may 

allow the attacker sufficient time, before a state comparison is made, to successfully attack a 

majority of the computers. Recalling the diverse code execution depicted in Figure 3, the 

actions of the poller are similar to those of a voter: the redundant outputs are compared in 

majority-voting fashion in order to mask the erroneous outputs of a minority. However, we 

used the term “poller” in Figure 3 instead of the term “voter” because a poller actively 

solicits outputs from the computers whereas a voter’s normal operation is to passively wait 

for the computers to provide their outputs as the voter’s input.  A voter would only receive an 

input when the computers’ programs are generating output – and this may be infrequent. The 

action of a poller, unlike that of a voter, is to frequently seek erroneous computer outputs as 

an indication of a successful attack corrupting a computer’s state.  The polling of the 

computers in Figure 3 is through the actions of the code stripes.  In this situation, an attacker 

alters a computer’s signature of a state (herein referred to as merely “state”) when 

compromising the computer. The state could, for example, be chosen from a combination of 

some selected values of the diverse code and from indicators from each of the individual 

redundant computers’ defenses. Instead of voting when the computers have outputs ready, 

the polling on a stripe boundary forces the computers to provide their intermediary results for 

comparison. Striping in this manner protects a computer by imposing a bound, S, on the 

stripe size. Since each computer’s state is refreshed between stripe executions, no minority’s 

state is preserved from one stripe to the next. Thus, a successful attack must be placed within 

a single stripe. This places an upper bound on the time of a successful attack of S machine 

instructions. Therefore, a stripe of size S will successfully thwart all attacks having the same 

temporal duration.  Consequently, as S is decreased, the level of protection is increased. An 

immediate drawback to decreasing S is the increase in polling and the subsequent overhead 

of majority state regeneration.  A subtle drawback is to diversity itself: striping, we contend, 

opposes diversity because of decreasing S. If voting is performed only when the computers 

have outputs ready, then the output specification for the diverse, but functionally-equivalent 

versions of the code would allow for comparison of the computers’ outputs.  Even if the 
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outputs are different but still conform to the output specification (due to allowable fuzziness 

in the output specification), then a form of inexact voting would permit these different-but-

still-correct outputs to not be inadvertently flagged as erroneous. When the size of S is not 

aligned with the times that the code’s output is created, then comparison of the output from 

the diverse, but functionally-equivalent versions of code must be purely on the internal state 

of the computers running the code. This need to specify the states so as to make them 

comparable is a hindrance to diversity because it forces a convergence towards a code 

monoculture among the computers. As S decreases so must the diversity of the versions of 

code.  In the lower limit, when S = 1 the comparison is reduced to single - and thereby 

identical - instructions. In this case, striving for high assurance has ushered in a monoculture. 

 

The notion that code diversity is limited in scenarios where replicated computers operate 

concurrently to fight through cyber attacks compels us to be mindful that code diversity will 

not be abundantly available. Therefore, in the next section dealing with game theory in the 

context of replication and diversity, we have taken a conservative approach to the degree of 

diversity that we assume is available for replicated computers.    

 

3.6 Replication and Diversity: A Game Theoretic Approach 

 

Game theory is the branch of applied mathematics that analyses conflict and cooperation 

among rational agents in strategic interactions. A strategic interaction is any interaction in 

which the behavior of one agent affects the outcome of others. Cyber defense comprises 

numerous strategic interactions. First, the attacker’s behavior must affect the defensive 

strategy. Second, several protocols and security policies cannot be unilaterally implemented 

because they require the collaboration of several users or several organizations to be 

successful. Finally, cyberspace is interconnected and the data collected from one vulnerable 

computer (organization) can be used to compromise the others. In fact, using the framework 

of game theory, the network defender optimizes his resources and defensive strategy while 

taking into account the users’ behaviors, other organizations, and the different attackers’ 

actions.  We created Table I to summarize the different classifications of cyber games.  
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Table I: Cyber Game Classification 

Questions Ans-
wers 

Types of Game Remarks 

Are the rules of the game already in 
places? 

Yes Game theory model  

No Mechanism design 
principle 

 

Are the players rational? Yes Game theory model  

No Evolutionary game 
model 

Population of players, 
replicator dynamic 
evolutionary stable strategy 

Can the contract or agreement between 
the players be enforced? 

Yes Cooperative game Solution concepts: Core, 
Kernel, Nucleolus, Shapley 
value 

No Non-cooperative game Solution concepts: Nash 
equilibrium 

Does the payoff depend only on the 
strategy and not the identity of players? 

Yes Symmetric game  

No Asymmetric game   

Does a player can benefit only at the 
equal expense of others? 

Yes Zero-sum game Frequent in military 
application, pure conflict 

No Non zero-sum game Frequent in civilian 
application, opportunity of 
cooperation for mutual 
benefit 

Is all players moving simultaneously or 
are later players not aware of earlier 
player move? 

Yes Simultaneous game  

No Sequential game  

Is all players knows the moves previously 
made by all other players? 

Yes Perfect information Only sequential game can 
be of perfect information 

No Imperfect information  

Is every player knows the strategies and 
payoffs available to the other players? 

Yes Complete information  

No Incomplete information  

Does the game have finite number of 
players, moves, events, outcomes? 

Yes Discrete game  

No Continuous game Differential game 

Is the game static or one-shot? Yes Static game  

No Dynamic game (see A)  

(A) Is the same stage game repeated? Yes Repeated game (see B)  

No Stochastic game  

(B) Does the players have perfect 
observability of others’ past action 

Yes Perfect monitoring game  

No Imperfect monitoring 
game (see C) 

 

(C) Is the signal of past plays, however 
imprecise and noisy, invariably observed 
by all players? 

Yes Imperfect public 
monitoring 

Players’ signal perfectly 
correlated 

No Imperfect private 
monitoring (see D) 

Players’ observe different 
signal of past plays. In the 
extreme case, players’ 
signals are conditionally 
independent  

(D) Do players, in their selfish 
optimization, need to infer the private 
history of other players based on their 
own imperfect observation? 

Yes Belief based equilibrium  

No Belief-free equilibrium Easily tractable 
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We contend that game theory is a mature theoretical framework that enables the modeling of 

several realistic scenarios. 

The research in [23] examines cyber defense – particularly those technologies that target 

cyberspace survivability. An effective defense-in-depth avoids a large percentage of threats 

and defeats those threats that turn into attacks. When an attack evades detection, is not 

defeated, and disrupts systems and networks, the defensive priority turns to survival and 

mission assurance. In this context, mission assurance seeks to ensure that critical mission 

essential functions (MEFs) survive and fight through the attacks against the underlying cyber 

infrastructure.  Survivability represents the quantified ability of a system, subsystem, 

equipment, process, or procedure to function continually during and after a disturbance. US 

Air Force systems carry varying survivability requirements depending on the MEFs’ 

criticality and protection conditions. Almost invariably, however, replication of a subsystem, 

equipment, process, or procedure is necessary to meet a system’s survivability requirements. 

Therefore, the degree of replication within a system can be paramount for MEF’s survival. In 

fact, particular subsystem may fail, but the overall system survives because the functions 

performed by the failed component are replicated. We cautiously prescribe diversity to the 

replicas. They are assumed to be functionally-equivalent; yet their ability to generate 

comparable outputs does not inadvertently drive towards a monoculture.  We assume that 

such diversity would stem from a randomization of some implementation aspects instead of 

having been based on systems that are differently designed.  For example, the randomizing of 

system call names would be more conducive to attaining functionally-equivalent replicas 

rather than the diversity achieved through having each of the replicas’ code designed by 

independent teams.  

 

Among FTFT’s research contributions, we developed a scheme that tracks a replica’s history 

leading to the building of that replica’s reputation – a measure of how much a defender can 

believe in that replica’s genuineness.  This approach uses a mechanism based on a repeated 

game. Specifically, a three-part mechanism - totally controlled by the defender - ensures high 

decision reliability through voting.  

 

The first part of the game-theoretic mechanism (in the context of a replica voting 
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mechanism) is an exponentially weighted moving average to accurately update the node 

reputation according to the most recent behavior. Specifically, a node i reputation   ( ) at 

times t is updated according to the following recursive formula. 

{

  ( )                                                                                  

  ( )  (   )  (   )                   correctly
  ( )  (   )  (   )                  correctly   

( ) 

γ is the smoothing factor,      . 

The second part is a mathematically proven optimum weight    derived from the node’s 
reputation   ( ). Clearly, 

 

      
  ( )

    ( )
                             ( ) 

The vote weight in (2) takes advantage of misleading information from malicious nodes. For 

instance, if the defender knows that a specific malicious node lies all the time (e.g. the node 

has zero reputation, negative infinite weight). The information from that node should be 

inverted and used to get the true state all the time (100% sure). Equation (2) generalizes this 

concept when aggregating the vote from several nodes. Clearly, a node having a negative 

weight (or a reputation less than 0.5) has its binary vote flipped before computing the final 

result. Nodes with positive weight have their vote unchanged. A node with zero weight has 

its vote practically eliminated if at least one other node has a weight different to zero. 

 

 The third part is a game separation method that discourages malicious nodes to accumulate 

any reputation or have any weight in the decision process. When the discount factor δ is 

large (     ), the malicious nodes are tempted to accumulate a reputation for a 

potential future damage. To prevent this, the defender must divide the game using the 

framework originally proposed by Ellison [24]. With this framework, the defender divides 

the game in M separate games and record separate reputations for each game. The first game 

taking place in period 1, M+1, 2M+1,3M+1…. The second in period 2, M+2, 2M+2,…, and 

so on. Since the games are separate, the outcome of one game does not influence the outcome 

of the other game; a malicious node’s best response must be independent across the different 

games. As a result, the new discount factor in each of the separate game becomes   , which 
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monotonically decreases as M increases. Therefore, there exists    such that for all   

    
    . The defender may choose M to be the least greatest integer such that M is 

greater than    up to the time the last regular node is compromised. The more intuitive way 

to understand the mechanism we just described is that it will take a longer time for a 

malicious node to accumulate reputation in each separate game. Say, for instance, that the 

nodes vote once a day and possibly accumulate a reputation. If the defender divides the game 

into 365 parts of day-long duration, then a malicious node that accumulates any reputation 

today must wait a year before creating any damage. Therefore, after game separation, it 

becomes optimal for all compromised nodes to cast bad votes (play N) and not accumulate 

any reputation at all.  As a consequence, because regular nodes have a higher weight in the 

aggregate decision, the aggregate vote reliability stays above 50% even though nearly all the 

nodes are compromised (see Figure 4).  

 

 
Figure 4: Repeated Game Simulation with Five Nodes 
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 We can see in this simulation that, from time 60 to 93, the aggregate decision remains correct 

although 4 out of 5 nodes are compromised. The aggregate decision actually survives until 

the last node is compromised. Thus, the mission survival time is substantially improved 

because the attacker is denied the “multiplier effect” of fault tolerance lent by majority rule.  

This substantiates a fight-through OODA loop, enabled by multi-dimensional redundancy, 

that completes before that attacker can complete his OODA loop.  The result: the attacker 

sees that the outcome of his successful attack is not a precipitous loss of the defender’s 

resources once a majority is compromised; instead there is a dogged sustaining of targets. 

The increase in the perceived effort to sustain the attack thus serves to overwhelm the 

attacker. The defender having been afforded sufficient surviving resources has fought 

through the attack. 

 

Replicas support mission survival; yet to the mission, the replicas should run transparently.  

A replicated process, for example, will produce replicated outputs that have to be resolved to 

a single output. Voting among the replicas resolves the multiple outputs and can prevent 

some malicious replicas from corrupting the outcome. Replication coupled with voting can 

therefore be a pervasive element of survival. The research in [25], [26] has compared two 

voting configurations: hierarchical voting (Figure 5) and simple majority.  
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Figure 5: Hierarchical Troika Nodal Arrangement 

 
Hierarchical voting is appealing because its similarity to “divide-and-conquer” expedites the 

voting outcome and admits voting on a larger scale.  This research affirmed that a simple 

majority configuration, in spite of the speed and scalability of a hierarchical one, is superior 

in terms of withstanding attacks from compromised replicas within the voting configuration. 

This result is timely because it synergizes with recent rethinking [27] of how warfighting 

information should flow.  Information has predominately been collected and pushed down 

through subordinates and eventually to the lowest level. Now this information pyramid is 

being inverted:  the lowest, most populated level is being “elevated” so that it is the focus for 

making game-changing decisions. Technology developments are growing, and the future 

networked battlefield may see the lowest unit equipped for improving both the receipt and 

collection of tactical data. Shifting replica-based survivability to accommodate this change 

means enabling a versatile mix of configurations to fit the warfighter’s need.  

 

3.7 Trusted OSN (Online Social Network) Services 

 

With the growing number of Internet users, Online Social Networks (OSNs) have become an 

important mode of communications, establishing a connection between people and providing 

a platform for online interaction. OSN sites have evolved as the highest growing medium 
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Logical connection 

Correct vote 

Incorrect vote 
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with expanded influence, involving various online activities on one platform for the people 

who are willing to communicate and share their resources with others. Technically, those 

OSN sites have integrated the functions of existing online services under one shelter, thus 

providing a more interesting and productive platform to the users. 

 

An OSN service can provide numerous advantages to users and organizations by helping 

people to interact with each other and share their resources instantly, but it also introduces 

new challenges and vulnerabilities in terms of security and privacy. This is a critical 

challenge to both service providers and users, considering the numbers of users growing 

dramatically every day, because inappropriate usage of OSNs may cause privacy damages or 

security violations. The security and privacy issues in OSNs become major concerns that 

hinder the widespread adoption of OSN services – especially in sensitive organizations.  

 

In general, survivability in a mission-critical system can be achieved by a three-pronged 

strategy: Prevention, Detection/Response, and Recovery [28]. According to this strategy, we 

must first of all attempt to prevent possible vulnerabilities and attacks from compromising 

mission-critical systems and resources. Undertaking this approach, we enhance the level of 

prevention in the highest-growing communication medium - OSN services. Ultimately, our 

trust mechanisms will make the current OSNs more survivable so that even sensitive 

organizations can rely on the services and increase their productivity and profit via reliable 

resource sharing with heterogeneous platforms, security, high availability, and cost-effective 

maintenance. 

 

Although users are constantly warned about the security and privacy threats involved with 

the use of OSN sites, yet many ordinary users are unaware of the risks through the service. 

Furthermore, the third party applications, which are integrated with an OSN, may trigger 

security vulnerabilities or weaknesses to the entire OSN service. 
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Figure 6:  States of Data Sharing on OSNs 

 

Currently, however, there are no standard countermeasures governing the OSN providers 

with regard to security, privacy, or reliability.  As a result, each provider has full discretion 

over how they will manage these important issues, but they do not have strong technical 

solutions for those concerns. Due to the lack of reliable trust mechanisms in the current OSN 

services, sensitive organizations such as government agencies and DoD have not adopted the 

services in their environments yet, while there are various advantages demonstrated in other 

communities. 

 

Therefore, in order to provide the same benefits of OSN services to we have analyzed the 

security and privacy vulnerabilities in OSN services and developed the support mechanisms 

for trusted OSN services, so that more users and sensitive organizations may adopt the 

trusted OSN services in their computing environments. The outcomes of this research should 

serve as a foundation for further research that will uncover solutions to trusted OSNs and 

lead to increased usage of the OSN services with its advantages. We believe the trusted 

OSNs will promote information superiority at sensitive organizations including IA 

community by providing effective trust mechanisms to a collection of universal information 

services that can be rapidly tailored and dynamically orchestrated to accommodate a variety 

of enterprise needs.  

 

In particular, we have developed a framework that can provide trusted data management in 
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OSN services [29-32]. In summary, we first identified the data types on OSNs and the states 

of shared data, considering the desired and actual levels of data sharing, with respect to 

Optimal, Under-shared, Over-shared, and Hybrid (depicted in Figure 6). We then defined and 

analyzed the parameters that facilitate or detract from the level of data sharing on OSNs. 

Furthermore, we investigated the preventive parameters that help OSN users and service 

providers properly maintain sensitive information on OSNs, reducing the possibility of state 

transition to non-Optimal states. 

 

In a reliable OSN service, users should be able to set up the desired levels of information 

sharing with specific groups of other users. However, it is not clear to an ordinary user how 

to decide how much information should be revealed to others. Therefore, in this research we 

proposed an approach for helping an OSN user determine his optimum level of information 

sharing, taking into consideration the payoffs (potential Reward or Cost) based on the 

Markov Decision Process (MDP). 

 

The MDP-based approach can be considered as a one-player game, where the user is viewed 

as playing the game against impersonal background situation. As an extension of the MDP-

based approach, we also introduced a game theoretic approach for helping OSN users to 

determine their optimum policy on OSNs in terms of data sharing, based on a two-player 

(i.e., user and attacker) zero-sum Markov game model [31]. This is a generalized framework 

of the MDP-based approach that considers the interactions of typical players in OSN services 

with conflicting interests whose decisions affect each other’s. After developing the game-

theoretical model, we conducted various attack simulations and discussed the results, 

considering random attackers without knowledge about the target, attackers with limited 

knowledge about the target, attackers with full knowledge about the target, and the risks of 

rapid public exposure [32]. 

 

Our research addresses the security and privacy problems in existing OSNs that have 

hindered the broader application of large-scale resource-sharing services in a sensitive 

organization. Our research outcomes offer an array of advanced approach for data-sharing in 

large-scale online computing services, developing new support mechanisms. We expect that 
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the trusted OSN services will enable the users to protect their security and privacy on the 

Internet and organizations to increase their productivity and profit via reliable resource 

sharing with heterogeneous platforms, security, high availability, and cost-effective 

maintenance. 

 

From investigating OSNs we gained exposure to a technology that is a microcosm of the 

Internet and mobile media.  We likewise devoted some of our attention to two other 

technologies that constitute the cyber infrastructure: wireless sensor networks and cognitive 

radio networks.  Delving into the cognitive the radio paradigm is a meaningful arena for 

FTFT because cognitive radios pose challenges that are pervasive across cyberspace.  

Cognitive radios, due to their openness, make them both an enabler and a danger. Wireless 

sensor networks are also relevant to FTFT because they, like fault-tolerant computers, are 

often deployed in hostile environments where they have to contend with resource-limiting 

circumstances.   In turning our attention to wireless sensor networks and cognitive radios we 

sought to introduce performance improvements to their role in cyberspace instead of 

elevating their assurance.  Usually replication and diversity, as we have presented them for 

fault tolerance for fight through, are introduced after a component’s functionally is 

implemented. While not explicitly showing how, we contend that our proposed designs 

OSNs, wireless sensor networks and cognitive radios will, if adopted, facilitate the use of 

replication and diversity for fighting-through. 

 

 

3.8 Dynamic Reconfigurable Routing for Wireless Sensor Networks 

 

The primary purpose of any infrastructure-less wireless sensor networks (WSNs) is to sense 

the environment and while doing so, they can deliver a multitude of services, ranging from 

reliable sensing, real time streams, mission critical support, network reprogramming and so 

on. The very nature of these networks calls for multi-hop wireless routing where all sensor 

nodes somehow decide on how, when, and whom to route the packets.  Obviously, no one 

routing mechanism would suffice for the variety of tasks a sensor network performs—

sending periodic sense-and disseminate flows, real time streams, mission critical alerts, 
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network reprogramming data, patched updates, interactive queries, commands and so on. In 

this regard, we have developed a dynamic reconfigurable routing framework for wireless 

sensor networks [33]. 

 

The main idea behind the dynamic reconfigurable routing framework is the exposition of the 

flow’s requirement using just 3 bits in the packet header. The 3 bits in the header represent         

i) whether the packet is a control packet or a data packet, ii) if the packet is delay sensitive, 

and iii) if the packet needs reliability. The inferences due to the 8 possible combinations of 

these bits are shown in the Table 2. 

 

Table 2: Combination of Preamble Bits and Their Inferences 

Data (0) 
Control (1) 

Real-time (1)/ 
Non-real-time (0) 

Reliable (1)/ 
Unreliable (0) 

Inference 

0 0 0 Unreliable, non real time, data packet 

0 0 1 Reliable, non real time, data packet 

0 1 0 Time critical, unreliable, data packet 

0 1 1 Mission critical data packet 

1 0 0 Unreliable, non real time, control packet 

1 0 1 Reliable, non real time, control packet 

1 1 0 Real time, unreliable, control packet 

1 1 1 Mission critical control packet 

 

The proposed dynamic routing framework (shown in Figure 7 as also seen in [33]) consists 

of a collection of routing components that optimize the routing for a given class of traffic. 

The suffix of the control packets (C0–C3) and data packets (D0–D3) indicates the status of 

the reliability and real time bits. For example, packet D3 would have preamble bits set to [0, 

1, 1], with the first bit indicating a data packet and last 2 bits account for the suffix 3. Two 

virtual queues, one each for data and control traffic, take the incoming packets and schedule 

them for transmission to the lower layers of the stack. The shared neighbor table houses 

values such as the node-ID, energy available, congestion level, depth, link quality estimate 

and a ‘last heard’ bit. Since routing components share this table, it decouples core protocol 

features from interface assumptions and regularizes data structure requirements. This leaves 

the routing layer with a composable set of routing components that can be seamlessly ported 

across various research efforts. 
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Figure 7: Dynamic Routing Framework 

 

The evaluation of the framework was done via both simulations and testbed implementations. 

Predictive maintenance (PdM) was chosen as the target application to test the framework. 

PdM’s variety of requirements of  periodic reports, streaming real time values, query 

response, continuous customization, network reprogramming, and mission critical alerts were 

mapped to the 3 bit patterns. Realistic traffic scenario was generated for the PdM application. 

The routing framework was also implemented on a 40 node MicaZ wireless testbed with the 

nodes arranged in a rectangular 8 X 5 grid. Results revealed the differential routing capability 

of the proposed routing framework. 
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3.9 Bargaining for Radio Spectrum Sharing 

 

With the Presidential Memorandum on Unleashing the Wireless Broadband Revolution [34], 

there has been a lot of recent activity on how to cater to the demands of wireless services in 

the years to come. Though some of the demands can be met with incremental technological 

advancements, a serious imbalance in the supply and demand still looms. This calls for a 

clean-slate design not only on the radio engineering solutions but also on how the market 

must evolve so that the resources are more efficiently utilized for better service offerings 

with competitive pricing. The most vital resource for any wireless application or service (i.e., 

mobile telephony, TV and radio broadcasts, GPS, maritime navigation) is the radio spectrum. 

Thus, it becomes absolutely essential that the available radio spectrum is utilized in the best 

possible manner. 

 

Spectrum allocation and management have traditionally followed a ‘command and control’ 

approach – regulators like the Federal Communications Commission (FCC) allocate 

spectrum to specific services under restrictive licenses. These limitations have motivated a 

paradigm shift from static spectrum allocation towards a more ‘liberalized’ notion of 

dynamic spectrum management in which secondary networks/users (non-license holders) can 

`borrow’ and `share’ idle spectrum from those who hold licensees (i.e., primary 

networks/users), without causing harmful interference to the latter – a notion commonly 

referred to as the dynamic spectrum access (DSA).   The most hotly debated question is: 

“how should spectrum be allocated and managed” by the authorities? The general consensus 

is to allow multiple secondary networks to compete and co-exist for better utilization of radio 

resources.  

 

In this regard, we have developed a bargaining framework that takes into consideration the 

interference from other networks such that all networks can co-exist. A preliminary version 

of this work was presented in IEEE WCNC 2012 in Paris, France [35]. The complete work is 

currently under review in the IEEE/ACM Transactions on Networking [36].  

 

Our main contribution lies in proposition of a bargaining framework for radio spectrum 
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sharing. We consider nodes to behave in a selfish manner, i.e., each node solely focuses on 

maximizing its utility by accessing and using as many channels as possible from the set of 

orthogonal channels not currently being used by any of the primary incumbents. The nodes in 

our model, for example, can correspond to broadcast access points deployed by competing 

wireless service providers. By using more channels each provider may intend to support 

more customers for maximizing its revenue. The channels that a node selects is, however, 

subject to the following constraint– nodes within the interference range of each other have to 

use orthogonal channels to minimize interference. Thus, the nodes will have to agree upon a 

sharing rule of the channels among themselves, i.e., each node will have to decide “how 

many” and “which” channels to use. In other words, the channel access problem by a set of 

selfish nodes is inherently a bargaining game. The fundamental question that we address is– 

how many and which channels each node should access to maximize its gain. Specifically, we 

model the problem of agreeing upon a sharing rule of the channels among the nodes as an 

infinite horizon Rubinstein-Stahl bargaining game. In our model, each node “bargains” with 

the other nodes (opponents) in the network regarding its “share” (how many and which) of 

the channels. Notice that, until the nodes agree upon the sharing rule, none of nodes can start 

data communication. Thus, “waiting” for the bargaining outcome also costs the nodes. We 

consider this cost by discounting future payoff of the nodes. This discounting represents the 

patience of the nodes in waiting for the bargaining outcome. We argue that it is the relative 

patience of the players that influence the degree of fairness in the sharing rule. We show 

more patient players tend to get a larger fraction of available channels.  

 

We solve the bargaining game by deriving Subgame Perfect Nash Equilibrium (SPNE) 

strategies of the players in the game. The SPNE strategies that we derive comprise a set of 

strategies such that, no player in a subgame can deviate from these strategies and thereby 

gain from his deviation. We investigate finite horizon version of the game and identify its 

SPNE strategies. We then extend these results to the infinite horizon bargaining game. We 

provide polynomial time algorithms to find the SPNE strategies of both the finite and infinite 

horizon versions of the game. Furthermore, we identify Pareto optimal equilibria of the game 

for improving spectrum utilization. We also conduct simulations to study how the self-gain 

maximizing strategies of the players affect system wide performance. 
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The proposed solution concept can be best described using an illustrative example with 6 

nodes as shown in Figure 8.  The graphs in the figure depict the conflict graph of the 

network. The number of channels available, M, has been assumed to be 5. Each node has a 

discount factor of 0.5. The game is played for 6 periods. The channels assigned to the nodes 

in each period have been shown in brackets beside the node. 

 

Our objective is to find the SPNE strategy of P1 in the first period of the game. Figure 8(a) 

shows the Pareto optimal NE strategy of P6 in the last period of the game. The offerer in this 

period is P6. First, a NE strategy of P6 in the last stage (which need not be Pareto optimal) is 

found. P6 colors his neighbors (P2 and P3) with the least possible number of colors 

(channels) and keeps rest of the channels for himself (thereby maximizing his share). The 

neighboring nodes (i.e., P1, P4 and P5) are given a channel each by graph coloring them. 

This is done by considering P1, P4 and P5 in non-increasing order of their degree in the 

subgraph induced by P1, P2, P3, P4 and P5. Thus, P1 is considered first and gets C2, next 

P5 gets C3 and finally P4 gets channel C1. Clearly, the channel assignment obtained so far 

corresponds to a NE strategy of P1 in the last stage, but one that may not be Pareto optimal, 

since the shares of some players (P1, P4 and P5) can be improved without hurting the share 

of any other player. 
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Figure 8: Pareto Optimal SPNE of the Respective Offerer in Different Periods 

 

The Pareto optimal NE strategy of P6 is obtained by considering the players in P-6 and 

checking to see if more channels can be assigned to the player. In the first iteration, P1 

receives C4, P2 and P3 does not get any more channels, P4 gets C3 and P5 gets C5. In the 

second iteration only P4 gets C5. The channel assignment obtained now is shown in Figure 

8(a), and corresponds to the Pareto optimal NE strategy of P6 in the last stage of the game. 

 

Following the same line of reasoning, we finally obtain the SPNE strategy of P1 in the first 

period of the game. This strategy of P1 is shown in Figure 8(f). 
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The proposed spectrum bargaining is fundamentally different and much more difficult than 

conventional Rubinstein-Stahl bargaining. This is because of two primary reasons– (i) 

spectrum can be spatially reused concurrently; two conflicting players must not use the same 

channels simultaneously yet well-separated players can, and, (ii) players can only use whole 

channels, not fractional channels. We consider both constraints while analyzing the spectrum 

bargaining game. 

 

 

4.0 Results and Discussion 

 

Fault tolerance is an important component of cyber defense.  In fact, fault tolerance deals 

with detection and treatment of failures and cyber defense deals with detection and treatment 

of violations. A well-formed and well-founded framework for treating violations comes from 

fault-tolerant computing. Traditionally, fault-tolerant computing dealt with randomly 

occurring faults and not faults resulting from intelligent attack. However, a reliable system 

should be survivable against the faults caused by cyber attacks as well as the internal failures.  

Whereas faults caused by natural-occurring phenomena are tolerable using established, 

standard approaches, attacker-induced faults require a more aggressive approach. 

 

 The results from the individual tasks described above demonstrate the aggressiveness needed 

to transform fault tolerance to a fight through capability. Nonetheless, new challenges arise 

in the area of transforming fault tolerance to attack tolerance.  We have witnessed some of 

these challenges in our investigations into OSNs. Our choosing of OSNs for an area of 

investigation was motivated by how OSNs are changing the world as part of cloud 

computing.   

 

Cloud computing has attracted users seeking the cloud’s ubiquity, convenience, and on-

demand network accessibility. Although promoting availability, the cloud’s perceived 

vulnerabilities have spurred researchers to find ways to assure availability in the cloud [37-

39].  Unavailability is not the only possible detriment to adopting the cloud computing 

model; integrity violations also became the concern of researchers [40], [41].  Of particular 
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interest to us is the proposed use of concepts from the domain of fault-tolerant computing to 

address availability and integrity in cloud computing. The deliberate introduction of 

redundancy in the cloud’s provisioning [42] underscores the suitability of cloud computing as 

a target for fault tolerance concepts.  Unlike random, naturally-occurring faults, the 

aggressiveness with which attackers induce faults has motivated researchers to propose 

schemes that make fault tolerance more robust.  

 

Although none of these issues is new in the world of computing, compared with traditional 

infrastructures, cloud computing architectures exhibit a different partitioning with respect to 

security and survivability issues [43-46]. 

 

The cloud’s attributes of ubiquity, convenience, and on-demand network accessibility served 

as a springboard for us to examine some of the cloud’s outermost reaches: wireless sensor 

networks and cognitive radios.  The two technologies, while not part of the cloud computing 

concept, are tied to the movement of data to and from the cloud; therefore they become key 

ingredients to the cyberinfrastructure and hence were deserving of our attention.  

 

Researchers [47], [48] have expanded upon traditional fault tolerance to make it robust 

enough to withstand attack. Using calculations of the mean-time-to-compromise [3], [4], 

these schemes employ sufficient amounts of resource redundancy in the framework of a 

general distributed system to withstand aggressively-created faults.  They do not, however, 

achieve a comprehensive path to survivability that, in addition to tolerating, will avoid, 

prevent, and recover from faults. As a result, these schemes limit themselves by not fully 

exploiting the fault fighting features that could be realized in cloud computing.  We contend 

that the approaches adopted by FTFT to transform fault tolerance to a fight through 

capability are amendable to address some of the main security challenges faced by cloud 

computing.  

 

Finally, although the results from our investigations into wireless sensor networks and 

cognitive radios did not deal with fault tolerance per se, they nonetheless contributed to the 

closely-related issue of dealing with resource constraints. The approaches that we proposed 
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in wireless sensor networks and cognitive radios are proactive whereas traditional fault 

tolerance is, for the most part, reactive. In a larger sense, our transforming fault-tolerant 

computing concepts into a fight through capability, is a blending of the reactive and the 

proactive: our proposed fight through OODA Loop is reactive to faults yet strives to 

proactively anticipate the attacker’s optimal next action.  Conceptually, this results in 

concentric OODA Loops as depicted in Figure 9.  The outer loop is the attacker’s OODA 

Loop and the inner loop belongs to the defender. The tighter diameter of the defender’s 

OODA Loop illustrates the defender’s more timely completion of the cycle. FTFT’s multi-

dimensional redundancy permits the defender to “get inside the enemy’s decision cycle.” 

 

 

Figure 9: Concentric OODA Loops: Attacker’s Outer Loop, Defender’s Inner Loop 

5.0 Conclusions 

 

FTFT offers discriminators from previous endeavors to apply fault tolerance for cyber defense. 

By simultaneously combining spatial, temporal and information redundancy we form a triad that 

establishes an OODA loop for fight-through.  Recall that MTTB and MTTC are coarse-grain 

measures applied at network design time for configuring firewalls, hardening servers, and 
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placing intrusion sensors in anticipation of attacks.  We proactively and propitiously adapt to 

undermine the attacker’s knowledge of our fault-tolerant system. Our adaption of fault tolerance 

techniques is multi-dimensional: an attacker inflicting punishment upon the fault tolerance 

mechanisms of one dimension will not defeat the entire fight-through capability; instead, the 

other dimensions become the reinforcements for fighting through.  To defeat the triad, the attack 

must succeed against all the dimensions simultaneously.   

 

We demonstrated how to stand-up multidimensional redundancy to increase the attacker’s target 

space.  In so doing, we force the attacker to attempt overtaking every dimension of redundancy 

simultaneously. This can be decisive: it permits the continual defeat of an adversary’s optimal 

strategies.   
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